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Abstract
Newly developed low amylose wheats (Triticum aestivum L.) have unique processing characteristics,
and thus allow millers to blend defined levels of amylose in mixes requiring low-amylose flour. The
amount of amylose synthesised during grain fill is dependent on the expression of three structural
genes that encode isoforms of granule-bound starch synthase (GBSS). Lines possessing null alleles at
the three waxy (wx) loci produce starch that lacks amylose. While such wheats are readily identified
by iodine staining, their identification in wheat marketing and production systems would be facilitated
by the use of rapid, spectral methods. The present study was undertaken to determine the feasibility
of using near-infrared (NIR) spectroscopy to identify waxy wheats, and differentiate them from partial
waxy and wild-type phenotypes. Nearly 200 lines from each of two harvest years, with a range of
zero (waxy) to three (wild-type) active genes, were ground and scanned (1100–2500 nm) in NIR
reflectance. Linear or quadratic discriminant functions of the scores from principal component
decomposition cross validation demonstrated that within a crop year, near-perfect separation of fully
waxy (27 of 27 samples from Year 1, and 23 of 24 samples from Year 2 correctly identified) from
non-waxy lines (165 of 165 samples from either Year 1 or Year 2 correctly identified) was achievable.
Further classification among the three non-waxy classes was more difficult, with an average overall
accuracy of 60%. Misclassifications were most often assignments into neighbouring gene classes (e.g.
1-gene line assigned to the 2-gene class). The method should prove useful in the identification of
waxy wheats, or of blends of waxy and non-waxy cultivars.
 2002 Elsevier Science Ltd
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(GBSS), also known as the waxy protein1, isINTRODUCTION
thought to be the primary enzyme responsible for

Starch in plant endosperm is synthesised within amylose synthesis. Because of the allohexaploid
specialised organelles called amyloplasts. The two nature of common wheat (Triticum aestivum L.),
macromolecules that comprise starch, namely there exist three unique loci (wx-A1, wx-B1, and
amylose and amylopectin, are chemically similar, wx-D1) that contain the genes that encode GBSS.
but differ in the degree of branching of the - Each locus encodes a separate isoform of GBSS.
glucosyl units, which are the core to these In its native (wild-type) state, common wheat pos-
molecules. Amylose, primarily composed of sesses all three isoforms. By natural mutation or
straight chains of � (1→4) linked -glucosyl units, conventional breeding practices, some lines may
is synthesised by an enzymatic process that differs possess a null allele at one locus, while others may
from the mechanism responsible for amylopectin carry two or, in the extreme case (very rare), three
formation. The granule-bound starch synthase null alleles. Generally, the greater the number of

active GBSS isoforms, the greater will be the
amylose content2–5. Wheats that carry three null
alleles are termed ‘waxy’, a term borrowed from∗ Corresponding author. E-mail: delwiche@ba.ars.usda.gov.
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the literature on maize. Lines with one or two genes. Therefore, the objectives of this study were
null alleles are often referred to as ‘partial waxy’ three-fold: (1) to examine the feasibility of using
wheats2,6. NIR reflectance spectroscopy to identify waxy

Waxy wheat breeding programs are currently wheat samples, (2) to determine whether NIR
underway in Australia, Canada, Japan and the could differentiate wheat samples based upon the
United States. Possible uses of waxy wheats include number of active GBSS genes, and (3) to un-
(1) a stock material for blending by wheat millers derstand the chemical basis for the NIR clas-
for the purpose of achieving prescribed processing sification models. Of particular interest is the
characteristics, (2) flour for Asian noodlemaking, relationship between amylose content and gene
and (3) a substitute for waxy maize starch for class, and whether this relationship is the sole basis
industries such as modified food starches, paper- of the NIR classification model. A successful NIR-
making and adhesives7. Conventional methods, based classification procedure has immediate ap-
such as SDS-PAGE for separation of GBSS iso- plication in both plant breeding and wheat mar-
forms as a means to identify waxy and partial waxy keting and production.
lines6, are expensive, difficult and time consuming,
and therefore not readily amenable to either wheat
breeding programs or to various stages of the

EXPERIMENTALwheat marketing and production system. Enzyme-
linked immunosorbent assay (ELISA) tests for Wheat
GBSS are possible5,8; however, the samples still
require a preliminary starch extraction procedure.

Still another alternative to the assessment of Year 1waxyness is the measurement of the actual con- Wild-type and partial waxy samples were drawncentration of amylose. Measurement of amylose
from breeders’ advanced lines harvested in 1998content in wheat starch is conventionally per-
in field plots at Lincoln and Sidney, Nebraska,formed by reliance on the reaction between amy-
U.S.A., as a component of a USDA-ARS wheatlose and iodine to form a blue complex. By means
breeding program. Samples included partial waxyof standard curves from substances of known amy-
and wild-type wheats derived from the followinglose content (e.g. potato starch amylose), amylose
crosses: MT8713/NE87612; NE90476/Ike;content is then determined either by colorimetry
NE90616/Ike; and SD88137/Ike. In addition,or by potentiometric titration. The greatest dis-
samples of the cultivars ‘Redland’ (wild-type),advantage to this procedure is the length of time
‘TAM202’ (wx-B1 null) and ‘Ike’ (wx-A1 null+wx-needed for the formation of the amylose-iodine
B1 null) also were included. Partial waxy and wild-complex. Even with the introduction of CaCl 2
type lines were identified in the F3 generation byin a starch-iodine-dimethyl sulfoxide solution to
snapping heads, determining GBSS status by SDS-permit low-temperature (65–70 °C) gelatinisation,
PAGE on a portion of the grains from each head5,and sonication to enhance solubilisation of the
and advancing the remaining portion to F4. Waxygelatinised starch, analysis time is 30–60 min per
wheat lines were derived from the cross Kanto107/sample9. Furthermore, the precision of this pro-
BaiHuo. The waxy lines were derived from singlecedure, as measured by the standard deviation of
grains of F2 seed (produced by greenhouse-grownrepeated assays, is typically 2–4% for maize
plants) that were visually identified for the waxysamples of normal (<25% amylose) or high (up to
trait and checked later with iodine solution. Be-70%) amylose content9. Assuming a similar level
cause of poor adaptation to the Nebraska climate,of precision for wheat, such an error would make
waxy samples were grown during 1998 in southernit difficult to successfully develop a secondary
California, outside Brawley, CA, U.S.A. Al-procedure, such as near-infrared (NIR) reflectance
together, the samples (n=192, >10 g each) pos-spectroscopy, for amylose content determination.
sessed between 0 (waxy) and 3 (wild-type) activeBecause commercial wheat samples typically have
GBSS genes. The number of samples assigned toa narrower range of amylose content, such as
each gene class was as follows: 27 gene class 020–34%5, quantifying the proportion of amylose
(triple null), 53 gene class 1 (wx-A1 null+wx-B1in starch by current chemical methods might be
null), 73 gene class 2 (wx-A1 null or wx-B1 null)less possible than categorising samples into levels

corresponding to the number of active GBSS and 39 gene class 3 (wild-type).
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for these three procedures. With the assumptionYear 2
that PCs were multivariate normally distributedThe samples for the second year were the progeny
in each gene class, and with the pooling of theof the first. Three fewer waxy samples were avail-
covariance matrix across the gene classes, a linearable for NIR analysis, making a total of 189
discriminant function was used during the thirdsamples for Year 2. All samples were grown in
procedure. Alternatively, a quadratic discriminantfield plots in southern California.
function also was used, based on no pooling of
the covariance matrices.Methodology The novelty of this procedure compared toWheat samples were held at room ambient con- previous research using principal component ana-dition for several days before grinding. Each lysis (PCA) is that the components used in asample was separately ground on a laboratory classification model were not restricted to be inscale cyclone grinder (Udy Corp., Ft. Collins, CO,
sequential order (i.e. PC 1, PC 2, . . ., PC 15).U.S.A.). Duplicate successive spectra
Rather, the optimum discriminant function was(1100–2498 nm, 2-nm wavelength resolution, 32
determined by a one-sample-out cross validationscans/spectrum) were made on separate fillings of
procedure, whereupon the number and order ofa standard ring cell loaded into a reflectance
the components were those which resulted in thespectrophotometer (Model 6500, Foss-NIR Sys-
highest rate of correctly classified samples, aver-tems, Inc., Silver Spring, MD, U.S.A.) equipped
aged over the four gene classes.with a rotating sample attachment. Reflected en-

ergy was referenced to corresponding readings
(collected before each sample) from a ceramic disk,
and stored as log10 (1/R). Prior to classification

RESULTS AND DISCUSSIONmodelling, the duplicate spectra of each sample
were averaged. With the exception of baseline variation and a

Apparent amylose content of Year 1 samples multiplicative effect caused by differences in par-
was measured by iodine-binding blue complex ticle size and packing density, the spectra of all
colorimetry, using slight modifications to the samples were remarkably similar, as shown for
method of Knutson and Grove9. To enhance pre- Year 1 in Figure 1. To accentuate any chemically
cision of diluting the sample for complex for- based spectral differences caused by gene class,
mation, the DMSO-iodine reagent volume was second derivatives (calculated as the second central
adjusted by using a positive displacement pipettor. difference with a gap size of 10 nm) were de-
A standard calibration curve was developed using termined for all waxy and wild-type samples
serial dilutions of a crude wheat amylose extract (gene classes=0 and 3, respectively). In the region
obtained by the procedure of Klucinec and of greatest non-water spectral differences
Thompson10. All samples were measured in du- (1950–2350 nm), the mean second derivative spec-
plicate, with the second set of assays completed trum for each of these classes, along with a one-
approximately 1 month after the first set. The sided standard deviation envelope (minus side for
repeatability of the chemical procedure was the wild-type mean, plus side for the waxy mean),
gauged by analysis of a control sample inserted indicated that spectral variation within a class was
approximately every eight sample assays. often as large as that between classes (Fig. 2).

Upon reduction of the spectral data by PCA, a
stepwise search of the most important factors, inClassification modelling
which up to 10 PCs were permitted, resulted inSAS (SAS Institute Inc., Cary, NC, U.S.A.) pro-
the selection of PC 1 as most useful in Year 1, ascedures PRINCOMP, STEPDISC, and DIS-
well as in Year 2 (Tables I and II, respectively).CRIM11 were sequentially used for (1) reducing
With the first PC alone, the overall classificationthe spectral data to 15 principal components (PCs),
rate was nearly 50%, regardless of year or dis-(2) identifying by stepwise search the components
criminant function (i.e. linear, quadratic). In-that were most important in separating the gene
terestingly, the second most important factor (PCclasses, and (3) determining by cross-validation
6 for Year 1, PC 8 for Year 2) did not coincidethe optimal number of components to use in a
with that associated with the next greatest indiscriminant function for gene classification. All

samples from a given year were used in one set spectral variation. Based on band assignments in
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Figure 1 Raw log (1/R) spectra of all Year 1 samples. Samples have been grouped according to the number of active
granule-bound starch synthase (GBSS) genes (0–3) by displacing the spectra 0·1 units upward per number of active genes. For
active gene number 0, 1, 2, and 3, n=27, 53, 73, and 39 samples, respectively.

first overtone), 2050 nm (N-H stretch+amide II),
2130 nm (N-H stretch+C=O stretch), 2260 nm
(O-H stretch+O-H deformation), and 2382 nm
(O-H deformation second overtone). With two
principal components and a linear discriminant
function, only one of the 27 waxy samples from
Year 1 could not be correctly classified. Similarly,
two waxy samples from Year 2 were incorrectly
classified. As more principal components were
added, the performance of the classification models
generally improved through the addition of the
seventh PC. At this number of PCs or greater, the
average percentage of correctly classified samples
ranged between 64 and 72, with little difference
between the choice of discriminant function or

Figure 2 Mean second derivative spectra of Year 1 GBSS year. By inspection, models using five to seven
gene classes 0 and 3, limited to the spectral region PCs were judged to offer the best compromise
(1950–2350 nm) that showed the greatest variation with gene between accuracy and complexity of single-yearclass. Arrows point in the direction of increasing number of

models. With seven PCs, the actual numbers ofgenes. Also included are mean +1� and mean −1� traces
correctly and incorrectly assigned samples by genefor groups 0 and 3, respectively.
class are shown in Tables III and IV for Years 1
and 2, respectively. For waxy wheat, no more than
two of the 27 samples from Year 1, and two of

the literature12, starch, protein, or their interaction the 24 samples from Year 2, were misclassified.
were prominent in PC 6 for Year 1 and PC 8 for In each case, waxy misclassification occurred as

an assignment into the neighbouring gene class.Year 2, especially near 1460 nm (N-H stretch
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Table I Average percentage of correctly classified samples by cross validation, based on linear or quadratic discriminant
function applied to principal component analysis scores

Year 1

Average percentage of correctly classified samplesa

Number of principal Principal components Linear Quadratic
components selectedb discriminant discriminant

1 1 42·3 51·6
2 1, 6 59·2 57·1
3 1, 6, 8 58·8 54·1
4 1, 6, 8, 4 59·7 56·4
5 1, 6, 8, 4, 2 56·8 59·4
6 1, 6, 8, 4, 2, 10 65·1 64·0
7 1, 6, 8, 4, 2, 10, 7 68·0 66·0
8 1, 6, 8, 4, 2, 10, 7, 12 67·9 65·8
9 1, 6, 8, 4, 2, 10, 7, 12, 9 71·5 65·6

10 1, 6, 8, 4, 2, 10, 7, 12, 9, 11 71·2 63·3

a Value determined as the average of the percentage of correctly classified samples within each of the four active starch
synthase categories by leave-one-out cross validation.
b Stepwise selection used to determine best combination of principal components.

Table II Average percentage of correctly classified samples by cross validation, based on linear or quadratic discriminant
function applied to principal component analysis scores

Year 2

Average percentage of correctly classified samplesa

Number of principal Principal components Linear Quadratic
components selectedb discriminant discriminant

1 1 47·2 46·5
2 1, 8 63·7 59·3
3 1, 8, 5 67·6 66·0
4 1, 8, 5, 12 67·4 65·6
5 1, 8, 5, 12, 6 70·6 68·1
6 1, 8, 5, 12, 6, 9 69·6 71·5
7 1, 8, 5, 12, 6, 9, 13 70·4 72·2
8 1, 8, 5, 12, 6, 9, 13, 11 69·0 71·6
9 1, 8, 5, 12, 6, 9, 13, 11, 14 68·5 70·0

10 1, 8, 5, 12, 6, 9, 13, 11, 14, 10 68·2 71·7

a Value determined as the average of the percentage of correctly classified samples within each of the four active starch
synthase categories by leave-one-out cross validation.
b Stepwise selection used to determine best combination of principal components.

For the partial waxy (gene classes 1 and 2) and and Year 2 PCs 1 and 8 [Fig. 3(b)] demonstrates
that spectral variation within the waxy sampleswild-type wheats (gene class 3), misclassification

occurred with greater frequency than mis- was at least as large as that variation among the
three other gene classes combined. The patternsclassification of waxy samples. Misclassification

usually represented assignment into the neigh- of the two scores plots are remarkably similar.
The samples tended to plot in the same locationbouring partial waxy or wild-type wheats, with

favour given to the wild-type wheats (class 3) in from the first year to the second, suggesting that
the models were responding to an effect causedthe case of the gene class 2 samples. Samples

possessing two active genes were most difficult to by genotype more so than that caused by en-
vironment, especially considering the difference inclassify.

A scores plot for Year 1 PCs 1 and 6 [Fig. 3(a)] geographical origin (Nebraska vs California) of the
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Table III Cross validation of samples, using seven-factor
principal component models with linear or quadratic dis-

criminant function

Year 1 (n=192 total)

Assigned gene classa

Actual gene Discriminant
class functionb 0 1 2 3

0 L 27 0 0 0
Q 25 2 0 0

1 L 0 40 11 2
Q 0 39 10 4

2 L 0 15 31 27
Q 0 15 34 24

3 L 0 2 16 21
Q 0 3 16 20

a Gene class refers to the number of active genes (0=triple
null allele, . . ., 3=wild-type) that encode granule-bound
starch synthase. Diagonal values (in bold) represent correct
assignments.
b L=linear, Q=quadratic.

Table IV Cross validation of samples, using seven-factor
principal component models with linear or quadratic dis-

criminant function

Year 2 (n=189 total)

Assigned gene classa

Actual gene Discriminant
class functionb 0 1 2 3

0 L 22 2 0 0
Q 23 1 0 0

1 L 0 44 8 1
Q 0 42 9 2

2 L 0 13 35 25
Q 0 12 38 23

3 L 0 3 13 23
Q 0 1 14 24

Figure 3 Sample scores of the two most significant principal
components for classification of the number of active GBSSa See footnote to Table III.
genes. Plot symbols (0, 1, 2, 3) represent GBSS gene classes.b L=linear, Q=quadratic.
(a)= Year 1 (factors 1 and 6), (b)= Year 2 (factors 1 and 8).

To better estimate the performance of a clas-non-waxy samples for Years 1 and 2. However,
this is not to say that Year 2 spectra exactly sification model, the Year 2 samples were used as

a test set to which a model developed with Yearresembled Year 1 spectra. A plot of the average
spectrum for each year reveals that the second 1 spectra was applied. Misclassifications were least

when the five-factor model with linear discriminantyear’s spectra were additively and multiplicatively
offset from the first year’s spectra (Fig. 4). The function was used. Table V displays the test results

of applying a five-factor model, developed fromreason for this offset was most likely a difference in
moisture contents between the two years’ samples, Year 1 spectra, to the Year 2 test set. As a spectral

pre-treatment to minimise overall yearly differ-which tends to cause a non-linear scatter effect13.
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Figure 4 Mean spectrum (solid line) for all samples in each year, with ±one .. envelope (dotted line).

Table V Test set results. Calibration model: linear dis-ences in the spectra, all spectra were mul-
criminant function applied to five-factor principal com-tiplicatively scatter corrected14 to the mean
ponents of multiplicative scatter corrected Year 1 spectraspectrum of the Year 1 samples. The effect of the (n=192)

scatter correction is displayed in Figure 5, whereby
Test set: Year 2 samples (n=189)most of the non-chemically based spectral differ-

ences between the two years is removed, as seen Assigned gene classa

by the overall similarity between the Year 1 mean
Actual gene class 0 1 2 3spectrum and the mean of the multiplicatively

scatter corrected Year 2 spectra. The major spec-
0 18 5 0 1tral difference that remains lies in the 1 1 46 5 1

1900–2000 nm water band region. Although the 2 0 22 23 28
3 0 10 9 20overall accuracy (62·2% correct on average) is

slightly less than those of the cross validations
a See footnote to Table III.within each year, the pattern for misclassification

was similar, this being that misclassified samples
were most often assigned to the neighbouring gene
class. Only one out of 165 non-waxy samples was different GBSS genotypes, no statistical differences

attributable to the GBSS group effect were noticed,erroneously classified as waxy; however, six of the
24 waxy samples were misclassified. with each being approximately 0·2% protein

(Graybosch, unpublished). Therefore, focus wasIn general, the possible reasons for the ability
of NIR to classify wheat by the number of active given to the two other possibilities.

Short of actual physical measurement of theGBSS genes include spectral sensitivities to particle
size variation, amylose vs amylopectin con- ground wheat particles, the particle size effect can

be investigated by developing an NIR model thatcentration, and GBSS concentration. We suspect
that the last possibility, GBSS concentration, is has incorporated a spectral pre-treatment to re-

duce the effect of particle size variation (such asunlikely because of its low level of abundance
compared to the endosperm storage proteins pres- multiplicative scatter correction), then comparing

the classification results of this new model to thoseent within the ground sample and to the amylose
and amylopectin concentrations. In an effort to of the non-scatter-corrected model. One could

reason that the particle size distribution has a largemeasure protein content of starch granules from



S. R. Delwiche and R. A. Graybosch36

Figure 5 Mean spectrum for all samples in Year 1 and mean spectrum for all samples in Year 2 spectra that were
multiplicatively scatter-corrected to the Year 1 mean.

effect on GBSS classification provided that the glucan content is to a certain extent measurable
by NIR reflectance spectroscopy17, particularly atscatter-corrected NIR model results in a poorer

grouping of the samples. Conversely, if little the longer (>2200 nm) wavelengths18.
If it is assumed that the spectral basis of thedifference in classification ability occurs between

the two models, the particle size effect would likely classification models is primarily associated with
the level of amylose, the ultimate accuracy of suchnot be the primary basis for GBSS classification

by NIR. When this experiment was performed on models is limited to the extent of the relationship
between GBSS gene class and amylose content.Year 1 samples, the results for the scatter-corrected

model (average overall cross validation accuracy The actual relationship, as shown for Year 1
samples in Figure 6, is such that only the waxyranging from 47·2 to 72·6%, depending on the

number of PCs, data not shown) were equivalent wheats had amylose contents distinctly different
than the other gene classes. Some samples assignedto the non-corrected model (42·3 to 71·2% range,

Table I). Hence, it seems likely that GBSS clas- to the gene class 0 (waxy) had amylose contents
ranging from 3–9%. These samples could havesification by NIR is most likely based on a spectral

sensitivity to amylose, amylopectin, or their inter- encountered a low level of outcrossing in field
plots, been the result of mechanical mixtures dur-action with other chemical constituents. Starch

lipid content also might have contributed to NIR ing harvest operations, or might represent ‘leaky’
backgrounds in which either some limited amyloseclassification. Yasui et al.15 found starch lipid con-

tent of waxy wheats derived from Kanto107 and synthesis occurs or some long-chain amylopectin
molecules bind iodine. Indeed visual inspection ofBaiHuo to be significantly less than their non-

waxy parents. Recently, the same researchers16 waxy seed stained with iodine demonstrated some
purplish foci, generally in the area around thefound total grain starch to be higher, and total

grain fat and �-glucan content to be elevated, in crease in the grain. The variation in amylose
content within each of the other three classes, withtwo waxy mutants derived from Kanto107. In the

latter case, however, the waxy lines were induced a standard deviation ranging from 1·75% (gene
class 2) to 2·19% (gene class 3) was sufficientlyby mutagenesis, so it is possible that the observed

changes in grain biochemical components might large to cause overlap across these classes, con-
sidering the narrow range of class means (18·7have been derived from additional mutations. Al-

though not evaluated in the current study, �- to 22·0%). This overlap is caused by a dosage
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Figure 7 Cross validation predictions for a partial least
squares 12-factor NIR model.

Figure 6 Relationship between amylose content and gene amylose content that was skewed in the direction
class for Year 1, shown as gene class means with error bars. toward the gene class to which the sample was
Also included are the cross validation predictions of the seven erroneously assigned. When discriminant analysisfactor with linear discriminant function model (summarised

was based on the chemically determined value forin Table III), with GBSS gene class (0, 1, 2, or 3) labelled
above each cluster. Mean±.. (Χ); misclassified individual amylose content, the overall average classification
sample ( • ); correctly classified individual sample (–). accuracy was 70·0%, which is marginally higher

than the 68·0% level for the discriminant analysis
based on seven PCs (Table III). Therefore, with the
assumption that all power of an NIR discriminantcompensation response that occurs when one or

more null alleles for GBSS are present, resulting model for gene class is primarily dependent on
amylose content, further improvements in modelin compensation by the remaining active genes

to elevate their production of GBSS2,4. Recent accuracy may only be marginal.
Repeatability error of the reference chemicalresearch has demonstrated differential effects

among the various active waxy alleles on amylose analysis procedure for amylose content, defined as
the standard deviation of the amylose contentcontent19,20. Amongst the three possible double null

classes, and within defined environments, some readings on a control sample (measured 53 times),
was 2·48%. The reason this value is greater thansignificant differences were observed. However,

across environments, amylose contents of these the standard deviations of amylose content within
the gene classes is most likely because the lattergenetic classes overlapped. In addition the differ-

ences were so slight that the changes of NIR values were calculated using averages from du-
plicate assays. Despite the large repeatability errordifferentiating the three possible single active

GBSS genotypes seems remote. of the reference procedure, a 12-factor partial least
squares calibration for amylose content producedCross validation assignments from the seven-

factor linear discriminant function model (Table a standard error of cross validation of 1·57%
(Fig. 7). This error is slightly higher than typicalIII) are also displayed in Figure 6 for the purpose

of identifying trends in misclassification. These standard errors of performance of about 1·0% that
have been reported for rice amylose content NIRtrends are identified by examining an individual

sample’s amylose content with respect to the dis- models21,22. Additional research is needed to
identify and quantify the degree of spectrallytribution of amylose contents within the sample’s

gene class. Often a misclassified sample had an sensed features (from lipid, �-glucan, and protein
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